Timothy de Reuse timothy.dereuse@mcgill.ca

In popular music, future events can often be predicted by copying past events and translating them forward in time.

INTRO

- Task: given a prime of symbolic music, predict a continuation
- Our assumption: the continuation is likely to be a repetition of material in the prime
- Task reduces to finding a single translation vector that defines what material to copy to the end of the prime

METHOD

- Look at the last few beats of the prime: does that material occur previously?
- Look through prime for the best match to those last few beats and take whatever occurs after it
- Exceptions for degenerate cases (not enough notes in prime, no good match, desired continuation too long)

RESULTS

- Tested on the Patterns for Prediction Development Dataset (PPDD)
- F1 scores for generated pitch-onset time pairs on 1000 randomly selected entries:
- Monophonic: 0.493
- Polyphonic: 0.445
- This is only slightly better than the order-1 Markov Models for the monophonic case, but significantly better for the polyphonic case, especially for longer continuations

DISCUSSION

- More complicated methods of choosing what part of the prime to copy failed to yield consistently better results
- Predictions are usually either completely right or completely wrong
- We hypothesize an upper limit to how well a method like this can perform without incorporating more sophisticated musical models

ALGORITHM

1) For:

Input, in (MIDI note number, MIDI channel, onset time) triples, lying within time interval
[$p_{\text {start, }}, p_{\text {end }}$]
Desired continuation length c,
Window length $w<c$,
2) Split the prime into 2 parts: Fixed window: all events in prime lying in the time interval [$p_{\text {end }}-w, p_{\text {end }}$] Sliding window: all events in prime lying in the time interval $\left[p_{\text {start }}, p_{\text {end }}-w\right)$
3) Find the vector v such that translating the sliding window by v maximizes the number of coinciding points between the two windows
4) Extract all points lying in the time interval $\left[p_{\text {end }}, p_{\text {end }}+c\right.$] from the translated sliding window; this is the predicted continuation

- Through brute-force testing on the PPDD, the best value for w was found to be 8 quarter-note beats.

Algorithm	Polyphonic			Monophonic		
	Recall	Prec.	F1	Recall	Prec.	F1
	0.451	0.463	0.445	0.496	0.503	0.493
"Cheating"	$\mathbf{0 . 5 6 2}$	$\mathbf{0 . 5 5 3}$	$\mathbf{0 . 5 4 7}$	$\mathbf{0 . 6 4 5}$	$\mathbf{0 . 6 4 4}$	$\mathbf{0 . 6 3 8}$

We compare this method to one that can "cheat" by always choosing the translation vector v that would give it the best predicted continuation.

